Estimation of optimal machining control parameters using artificial bee colony

نویسندگان

  • Norfadzlan Yusup
  • Arezoo Sarkheyli
  • Azlan Mohd Zain
  • Siti Zaiton Mohd Hashim
  • Norafida Ithnin
چکیده

Modern machining processes such as abrasive waterjet (AWJ) are widely used in manufacturing industries nowadays. Optimizing the machining control parameters are essential in order to provide a better quality and economics machining. It was reported by previous researches that artificial bee colony (ABC) algorithm has less computation time requirement and offered optimal solution due to its excellent global and local search capability compared to the other optimization soft computing techniques. This research employed ABC algorithm to optimize the machining control parameters that lead to a minimum surface roughness (Ra) value for AWJ machining. Five machining control parameters that are optimized using ABC algorithm include traverse speed (V), waterjet pressure (P), standoff distance (h), abrasive grit size (d) and abrasive flow rate (m). From the experimental results, the performance of ABC was much superior where the estimated minimum Ra value was 28, 42, 45, 2 and 0.9% lower compared to actual machining, regression, artificial neural network (ANN), genetic algorithm (GA) and simulated annealing (SA) respectively. N. Yusup Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia e-mail: [email protected] A. Sarkheyli · A. M. Zain (B)· S. Z. M. Hashim · N. Ithnin Soft Computing Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia e-mail: [email protected]; [email protected] A. Sarkheyli e-mail: [email protected] S. Z. M. Hashim e-mail: [email protected] N. Ithnin e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cutting Parameter Optimization for End Milling Operation Using Advanced Metaheuristic Algorithms

In die manufacturing industries surface roughness is considered as a vital quality characteristic in order to retain the consumers’ satisfaction. On the other hand, manufacturers want to minimize the machining time which eventually reduces their cost. This research deals with an optimization problem to minimize the machining time (T) for end milling operation on hot die steel (H13), subject to ...

متن کامل

Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach

Selection of cutting parameters in machining operations is an essential task to reduce cost of the products and increase quality. This paper presents an optimization approach based on artificial bee colony algorithm for optimal selection of cutting parameters in multi-pass turning operations. The objective is to find the optimized cutting parameters in the turning operations. A comparison of ev...

متن کامل

Optimization of Surface Roughness in WEDM Process Using Artificial Bee Colony Algorithm

This paper presents an investigation on the effect of machining parameters on the surface roughness (centre line average roughness: Ra) and the optimal combination of process parameter for minimum Ra in wire electrical discharge machining (WEDM) of EN 31 steel using artificial bee colony (ABC) algorithm. The experimental studies are conducted by varying discharge current, voltage, pulse on time...

متن کامل

Optimal Operation of Microgrid in the presence of Real-time Pricing Demand Response Program using Artificial Bee Colony Algorithm with a Modified Choice Function

Abstract: Microgrid is one of the newest technologies in power systems. Microgrid can usually has a set of distributed energy resources that makes it able to operate separate from power grid. Optimal operation of microgrids means the optimal dispatch of power resources through day and night hours. This thesis proposed a new method for optimal operation of microgrid. In this method, real-time pr...

متن کامل

Evaluating the Performance of the Artificial Bee Colony Algorithm in Flood Frequency Analysis

Selection of the appropriate distribution function and estimation of its parameters are two fundamental steps in the accurate estimation of flood magnitude. This study relied on the concept of optimization by meta heuristic algorithms to improve the results obtained from the conventional methods of parameter estimation, such as maximum likelihood (ML), moments (MOM) and probability weighted mom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Intelligent Manufacturing

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2014